Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(46): e2306902120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37934823

RESUMO

Plastic recycling presents a vexing challenge. Mechanical recycling offers substantial greenhouse gas emissions savings relative to virgin plastic production but suffers from degraded aesthetic and mechanical properties. Polypropylene, one of the most widely used and lowest-cost plastics, features methyl pendants along the polymer backbone, rendering it particularly susceptible to declining properties, performance, and aesthetics across a succession of mechanical recycles. Advanced processes, such as solvent-assisted recycling, promise near-virgin quality outputs at a greater energy and emissions footprint. Mechanical and advanced recycling are often presented as competing options, but real-world plastic waste streams are likely to require preprocessing regardless of whether they are routed to an advanced process. This study quantifies the life-cycle greenhouse gas implications of multiple recycling strategies and proposes a system in which mechanical and solvent-assisted recycling can be leveraged together to boost recycling rates and satisfy demand for a wider range of product applications. Polypropylene can be recovered from mixed-plastic bales produced at material recovery facilities and processed through mechanical recycling, with a varying fraction sent for further upgrading via solvent-assisted recycling to produce material approved for food packaging and other higher-quality applications. The resulting mechanically recycled rigid polypropylene reduces life-cycle greenhouse gas emissions by 80% relative to the same quantity of virgin material, while the upgraded higher-quality material achieves GHG savings of 30%.

2.
Environ Sci Technol ; 57(6): 2235-2247, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36719708

RESUMO

Composting can divert organic waste from landfills, reduce landfill methane emissions, and recycle nutrients back to soils. However, the composting process is also a source of greenhouse gas and air pollutant emissions. Researchers, regulators, and policy decision-makers all rely on emissions estimates to develop local emissions inventories and weigh competing waste diversion options, yet reported emission factors are difficult to interpret and highly variable. This review explores the impacts of waste characteristics, pretreatment processes, and composting conditions on CO2, CH4, N2O, NH3, and VOC emissions by critically reviewing and analyzing 388 emission factors from 46 studies. The values reported to date suggest that CH4 is the single largest contributor to 100-year global warming potential (GWP100) for yard waste composting, comprising approximately 80% of the total GWP100. For nitrogen-rich wastes including manure, mixed municipal organic waste, and wastewater treatment sludge, N2O is the largest contributor to GWP100, accounting for half to as much as 90% of the total GWP100. If waste is anaerobically digested prior to composting, N2O, NH3, and VOC emissions tend to decrease relative to composting the untreated waste. Effective pile management and aeration are key to minimizing CH4 emissions. However, forced aeration can increase NH3 emissions in some cases.


Assuntos
Poluentes Atmosféricos , Compostagem , Gases de Efeito Estufa , Compostos Orgânicos Voláteis , Gases de Efeito Estufa/análise , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Amônia/análise , Dióxido de Carbono/análise , Solo , Metano/análise , Óxido Nitroso/análise , Esterco
3.
Environ Sci Technol ; 56(23): 17256-17265, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36409840

RESUMO

Increasingly stringent limits on nutrient discharges are motivating water resource recovery facilities (WRRFs) to consider the implementation of sidestream nutrient removal or recovery technologies. To further increase biogas production and reduce landfilled waste, WRRFs with excess anaerobic digestion capacity can accept other high-strength organic waste (HSOW) streams. The goal of this study was to characterize and evaluate the life-cycle global warming potential (GWP), eutrophication potential, and economic costs and benefits of sidestream nutrient management and biosolid management strategies following digestion of sewage sludge augmented by HSOW. Five sidestream nutrient management strategies were analyzed using environmental life-cycle assessment (LCA) and life-cycle cost analysis (LCCA) for codigestion of municipal sewage sludge with and without HSOW. As expected, thermal stripping and ammonia stripping were characterized by a much lower eutrophication potential than no sidestream treatment; significantly higher fertilizer prices would be needed for this revenue stream to cover the capital and chemical costs. Composting all biosolids dramatically reduced the GWP relative to the baseline biosolid option but had slightly higher eutrophication potential. These complex environmental and economic tradeoffs require utilities to consider their social, environmental, and economic values in addition to present or upcoming nutrient discharge limits prior to making decisions in sidestream and biosolids management.


Assuntos
Fertilizantes , Esgotos , Esgotos/química , Biossólidos , Biocombustíveis , Nutrientes , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Anaerobiose
4.
Environ Sci Technol ; 54(15): 9200-9209, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32628836

RESUMO

Waste-to-energy systems can play an important role in diverting organic waste from landfills. However, real-world waste management can differ from idealized practices, and emissions driven by microbial communities and complex chemical processes are poorly understood. This study presents a comprehensive life-cycle assessment, using reported and measured data, of competing management alternatives for organic municipal solid waste including landfilling, composting, dry anaerobic digestion (AD) for the production of renewable natural gas (RNG), and dry AD with electricity generation. Landfilling is the most greenhouse gas (GHG)-intensive option, emitting nearly 400 kg CO2e per tonne of organic waste. Composting raw organics resulted in the lowest GHG emissions, at -41 kg CO2e per tonne of waste, while upgrading biogas to RNG after dry AD resulted in -36 to -2 kg CO2e per tonne. Monetizing the results based on social costs of carbon and other air pollutant emissions highlights the importance of ground-level NH3 emissions from composting nitrogen-rich organic waste or post-AD solids. However, better characterization of material-specific NH3 emissions from landfills and land-application of digestate is essential to fully understand the trade-offs between alternatives.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos , Gerenciamento de Resíduos , Efeito Estufa , Humanos , Resíduos Sólidos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...